On certain infinite products III
نویسندگان
چکیده
منابع مشابه
On the transcendence of certain Petersson inner products
We show that for all normalized Hecke eigenforms $f$ with weight one and of CM type, the number $(f,f)$ where $(cdot, cdot )$ denotes the Petersson inner product, is a linear form in logarithms and hence transcendental.
متن کاملInfinite Products of Infinite Measures
Let (Xi, Bi, mi) (i ∈ N) be a sequence of Borel measure spaces. There is a Borel measure μ on ∏ i∈N Xi such that if Ki ⊆ Xi is compact for all i ∈ N and ∏ i∈N mi(Ki) converges then μ( ∏ i∈N Ki) = ∏ i∈N mi(Ki)
متن کاملStructure of Certain Banach Algebra Products
Let and be Banach algebras, , and . We define an -product on which is a strongly splitting extension of by . We show that these products form a large class of Banach algebras which contains all module extensions and triangular Banach algebras. Then we consider spectrum, Arens regularity, amenability and weak amenability of these products.
متن کاملIrrationality of certain infinite series
In this paper a new direct proof for the irrationality of Euler's number e = ∞ k=0 1 k! is presented. Furthermore, formulas for the base b digits are given which, however, are not computably effective. Finally we generalize our method and give a simple criterium for some fast converging series representing irrational numbers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 1988
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa-51-3-221-231